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Abstract Ovarian cancer is the most common cause of death from gynecological
malignancies in many developed countries. When confined to the ovary, the 5-year
survival rates are over 90 %, but detection methods are insufficiently accurate for wide-
spread application. Consequently, ovarian cancer is typically diagnosed late, with poor
prognosis. Magnetic resonance spectroscopy (MRS) could potentially improve ovarian
cancer diagnosis, but is currently hampered by poor resolution for this small, moving
organ. Advanced signal processing methods through the fast Padé transform (FPT)
can improve resolution and provide quantitative metabolic information. We applied
the FPT to noise-corrupted time signals generated according to in vitro MRS data as
encoded from malignant ovarian cyst fluid. In the presence of background noise, the
FPT converged using merely 1/8 of the full signal length N = 1024, amounting to some
128 data points. This number of time signal points permits reconstruction of altogether
128 spectral parameters for 64 ensuing resonances. Each resonance is quantified by 2
spectral parameters, the complex-valued frequencies and amplitudes. The FPT accu-
rately reconstructed the spectral parameters for all twelve genuine resonances from
which the input time signal is intrinsically built. Thereby, in the presence of noise, the
FPT provided fully reliable estimates of metabolite concentrations characteristic of
malignant ovarian cyst fluid. Through the practical concept of signal-noise separation
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by means of so-called pole-zero cancellations (Froissart doublets), the remaining 52
resonances from the total of 64 resonances were unequivocally identified as spurious
and, as such, could confidently be discarded. Given that magnetic resonance-based
modalities entail no exposure to ionizing radiation, if their diagnostic accuracy were
improved, magnetic resonance imaging and spectroscopy could have broader appli-
cations in screening surveillance for early ovarian cancer detection, especially among
women at high risk. The present results suggest that Padé-optimized MRS could help
achieve that goal.

Keywords Magnetic resonance spectroscopy · Mathematical optimization ·
Ovarian cancer · Gaussian noise

Abbreviations
Ala Alanine
au Arbitrary units
CF Continued fractions
Cho Choline
Cr Creatine
Crn Creatinine
FFT Fast Fourier transform
FID Free induction decay
FPT Fast Padé transform
Glc Glucose
Gln Glutamine
IFPT Inverse fast Padé transfor
Iso Isoleucine
Lac Lactate
Lys Lysine
Met Methionine
MR Magnetic resonance
MRI Magnetic resonance imaging
MRS Magnetic resonance spectroscopy
ppm Parts per million
RMS Root-mean-square
SNR Signal-to-noise ratio
TVUS Transvaginal ultrasound
Val Valine
ww Wet weight

1 Introduction

1.1 The clinical problem: the lack of accurate early detection of ovarian cancer

Ovarian cancer is the 7th leading cause of cancer deaths among women worldwide
[1]. In many developed countries, it is the most common cause of death from gyneco-
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logical malignancies [2]. This malignancy is most often detected after spread beyond
the true pelvis, when the prognosis is very poor, whereas stage Ia disease has better
than a 90 % chance of 5-year survival. Unfortunately, early detection is still beyond
current reach with standard diagnostic methods. Consequently, despite progress in
treatment, mortality rates from ovarian cancer have not declined substantially over the
last 30 years [3].

Albeit sensitive, transvaginal ultrasound (TVUS) lacks adequate specificity to dis-
tinguish benign from malignant adnexal changes [4]. Ovarian cancer can be detected
more accurately by magnetic resonance imaging (MRI). In a meta-analytical compar-
ison of morphological imaging modalities, MRI was of greatest incremental value in
identifying ovarian cancer when the nature of adnexal mass was considered uncertain
on TVUS [5]. Nevertheless, even with contrast-enhanced MRI, sixty of 241 (24.9 %)
false positive findings from initial TVUS were not recognized as benign lesions [5].

Magnetic resonance spectroscopy (MRS) could potentially enhance the specificity
of MRI by detecting metabolic features characteristic of ovarian cancer. Since molec-
ular changes often precede morphologic alterations, MRS might further improve sen-
sitivity, as well. However, in a recent review of the published studies, in vivo MRS
was not found to adequately distinguish malignant from benign ovarian lesions [6].
Poor resolution and signal-to-noise ratio (SNR) have been major problems for in vivo
MRS of this small, moving organ [6].

1.2 Potential solutions via advanced signal processing by the fast Padé transform

Clinical scanners use the fast Fourier transform (FFT) to convert the encoded time sig-
nal into its spectral representation in the frequency domain. The FFT is a low-resolution
spectral estimator and can give only a total shape spectrum (envelope). A shape spec-
trum in the FFT is obtained from pre-assigned frequencies whose minimal separation
is determined by the acquisition time, T . Attempts to improve resolution lead to a
worsening of SNR [7]. The linearity of the FFT and lack of extrapolation capabilities
further contribute to poor SNR. As a non-parametric estimator, the FFT requires post-
processing via fitting which is non-unique. This standard procedure (FFT + fitting),
can, in fact, only yield guessed estimates of the true metabolite concentrations [8].

Among the advanced signal processing methods, the fast Padé transform (FPT) is
especially suitable for both in vitro and in vivo MRS [6–8]. A spectrum in the FPT,
as a non-linear response function via the unique ratio of 2 polynomials,PK /QK , of
degree K , does not use the fixed Fourier mesh 2πk/T (k = 0, 1, 2, . . .), and can be
computed at any frequency ω. Consequently, resolution is not pre-determined by T .
The conundrum between increasing T for improved resolution and increasing noise
is thus averted. In contrast to the FFT, which is limited by a sharp cut-off of the
time signal at the end of the acquisition time, the FPT uses its polynomial quotient
to extrapolate beyond T . This feature of the FPT also contributes to improved resolu-
tion [6–8]. Being non-linear, the FPT effectively suppresses noise and thus improves
SNR. Crucially, the FPT is a stable parametric signal processor, which unambiguously
determines the number of true metabolites and their spectral parameters from which
metabolite concentrations can be reliably reconstructed [6–8].
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After the spectral parameters, namely the fundamental frequencies and the associ-
ated amplitudes {ωk, dk} (1 ≤ k ≤ K ) of the specified time signal {cn} (0 ≤ n ≤
N − 1) with length N and sampling time τ = T/N have been reconstructed, the
FPT can automatically generate the corresponding complex-valued total shape spec-
trum via the rational response function in the form of the Heaviside partial fraction
decomposition:

cn =
K∑

k=1

dk zn
k ⇒ PK−1(z−1)

QK (z−1)
=

K∑

k=1

dk

z−1 − z−1
k

. (1)

Here, we have z = eiτω, zk = eiτωk , Im(ωk) > 0, ω = 2πν, ωk = 2πνk where
ω and ν are the angular and linear frequency, respectively. In Eq. (1), the spec-
trum

∑K
k=1 dk/(z−1 − z−1

k ) is summed up explicitly to yield the polynomial quotient
PK−1/QK . This is the para-diagonal Padé approximant [8]. Note that diagonal Padé
approximant, PK /QK is often used, as we shall do in Sect. 3.

In theoretical physics, including quantum mechanics, the Padé approximant, or
the fast Padé transform as it is termed in the area of signal processing [8], has been
the “work-horse”. The FPT is particularly well suited for handling time signals, also
called free induction decay (FID) curves, as encountered in MRS. Since there exists a
time-frequency duality, the inverse fast Padé transform (IFPT) computed from Eq. (1)
will give the {cn} as a sum of K damped complex exponentials {zk} = {exp(iτωk)}.
Analogous to the inverse FFT, the capability of the IFPT to retrieve the physical input
time signal regardless of the level of noise corruption [6], is the feature which supports
the use of the term “transform” in the FPT. This capability can be observed by putting
the Padé spectrum from Eq. (1) into its equivalent form of continued fractions (CF) [8].
In other words, each signal point {cn}(1 ≤ n ≤ N −1) can be exactly reconstructed for
any level of noise from the general analytical expression for the expansion coefficients
{an} in the CF [8]. Thus, the optimal mathematical model for the frequency spectrum
of these FIDs is prescribed quantum-mechanically as the finite-rank response Green
function in the form of the unique ratio of two polynomials, namely the fast Padé
transform. Just as in the time domain, for which the Schrödinger time evolution oper-
ator predicts the FID as the sum of damped exponentials, the same quantum physics
determines that the frequency spectrum is provided by the Green function via the Padé
quotient of two polynomials from Eq. (1). It is for this reason that the FPT has shown
such an unprecedented algorithmic success in yielding exact reconstructions [6,8].

There are two complementary versions of the fast Padé transform: the FPT(+) and
FPT(−). In the diagonal form, these have the following representations for the exact
infinite-rank Green function, which is defined as the Maclaurin series with the time
signal points {cn} as the expansion coefficients:

G(z−1) ≡
∞∑

n=0

cnz−n−1 ; Exact, (2)

G(z−1) ≈ G(+)
K (z) ≡ P+

K (z)

Q+
K (z)

=
∑K

r=1 p+
r zr

∑K
s=0 q+

r zs
; FPT(+), (3)
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G(z−1) ≈ G(−)
K (z−1) ≡ P−

K (z−1)

Q−
K (z−1)

=
∑K

r=0 p−
r z−r

∑K
s=0 q−

r z−s
; FPT(−). (4)

We can exactly and uniquely extract the expansion coefficients {p±
r , q±

s } of the
numerator P±

K (z±1) and denominator Q±
K (z±1) polynomials from the time signal

points {cn} by solving a single system of linear equations from definitions (3) and (4),
after truncation of the Maclaurin series for G(z−1) at n = N − 1.

An equivalent way of expressing the spectra P±
K (z±1)/Q±

K (z±1) is through the
canonical forms:

P±
K (z±1)

Q±
K (z±1)

= p±
K

q±
K

K∏

k=1

z±1 − z±
k,P

z±1 − z±
k,Q

. (5)

The roots of the characteristic equations, Q±
K (z±1) = 0 have the solutions z±1

k ≡
z±1

k,Q(1 ≤ k ≤ K ). These are a constituent part of the fundamental harmonics via

{d±
k , z±1

k,Q}. The associated fundamental amplitudes d±
k are the Cauchy residues of the

spectra from Eq. (5). Thus, when the roots are non-degenerate, (z±1
k′,Q �= z±1

k,Q, k′ �= k),
these amplitudes are defined by:

d±
k = limz±1→z±

k,Q

{(
z±1 − z±1

k,Q

) [
P±

K (z±)/Q±
K (z±)

]}
, (6)

and thus:

d±
k =

P±
K

(
z±

k,Q

)

(
d/dz±

k,Q

)
Q±

K

(
z±

k,Q

) = p±
K

q±
K

K∏

k′=1

z±
k,Q − z±

k′,P(
z±

k,Q − z±
k′,Q

)

k′ �=k

, (7)

⇒ d±
k ∝

(
z±

k,Q − z±
k,P

)
. (8)

Therein, (d/dz±
k,Q)Q±

K (z±
k,Q) is the first derivative of the denominator polynomials.

Therefore, each amplitude represents the distance between the pole and zero, d±
k ∝

z±
k,Q − z±

k,P , as per (8). Accordingly, the Cauchy residue reflects the behavior of a
line integral of a meromorphic function around a specified pole. With this, the recon-
struction of the 2K complex fundamental parameters {ω±

k , d±
k } within the FPT(±) is

completed. The expressions for G(+)
K (z) and G(−)

K (z−1) from Eqs. (3) and (4) provide
an approximation to the same Green function G(z−1). With respect to the input Ma-
claurin series G(z−1), the Green function G(−)

K (z−1) is convergent outside the unit
circle (|z| > 1), and divergent inside the unit circle (|z| < 1). The convergence rate of
G(−)

K (z−1) is more rapid than the original Maclaurin series, and thus the FPT(−) is an

accelerator of convergence. In contrast, the FPT(+) via G(+)
K (z) uses the variable z. It

thereby converges inside the unit circle (|z| < 1) which is where the exact Green func-
tion G(z−1) diverges. The FPT(+) has the more difficult task of converting divergent
series into convergent ones via the principle of Cauchy analytical continuation.
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The key point is that the FPT(+) and FPT(−) work in a complementary manner,
inside and outside the unit circle, respectively. Internal cross-validation is provided
when full convergence is achieved in the FPT(−). In other words, ω+

k ≈ ω−
k ≡ ωk and

d+
k ≈ d−

k ≡ dk where {ωk, dk} are the complex frequencies and amplitudes from the
FID of Eq. (1). In such a case, the FPT(±) exactly solve the harmonic inversion prob-
lem, which is called quantification in MRS. This is achieved using only the sampled
time signal {cn} in order to reconstruct all the complex fundamental frequencies and
amplitudes {ωk, dk}, as per Eq. (1).

Since the poles are the only singularities, the spectra P±
K (z±1)/Q±

K (z±1) are mer-
omorphic functions. The poles {z±

k,Q} and zeros {z±
k,P } of these spectra are the roots

of Q±
K (z±1) = 0 and P±

K (z±1) = 0, respectively. The harmonic variables z±1
k are

denoted as z±
k,Q and z±

k,P by adding the subscripts P and Q to refer to the numera-

tor P±
K (z±1) and denominator Q±

K (z±1) polynomials. The spectral poles and zeros
yield the physical parameters of the system which generated the FIDs as a response
to an external excitation. The amplitudes, i.e. the intensities of the FID, are likewise
directly related to the spectral poles and zeros since d±

k ∝ z±
k,Q − z±

k,P , according to

Eq. (8). Actually, the FPT(±) links the two separate representations called the poles
of the FPT(±) and the zeros of the FPT(±), as denoted by pFPT(±) and zFPT(±),
respectively.

Poles that are stable against external perturbations are genuine or physical. On the
other hand, when exposed to even the slightest perturbation, unstable poles oscillate
widely. These unstable poles do not ever converge with increased degree of the Padé
polynomial. In other words, the latter are similar to the behavior of noise or noise-like
corruption, i.e. they act as random fluctuations.

By examining the spectral poles and zeros in the FPT(±), stable and unstable
poles can be clearly distinguished. In the case of the stable structures, the poles and
zeros are distinct, i.e. they do not coincide, z±

k,Q �= z±
k,P . By contrast, the unsta-

ble structures show confluence of poles and zeros, namely z±
k,Q ≈ z±

k,P , and these
coincident or nearly coincident poles and zeros are termed Froissart doublets. Since
d±

k ∝ z±
k,Q − z±

k,P according to Eq. (8), genuine resonances (z±
k,Q �= z±

k,P ) have non-

zero amplitudes. On the other hand, spurious resonances (z±
k,Q = z±

k,P or z±
k,Q ≈ z±

k,P )

have zero or nearly zero amplitudes and, for that reason, they are extremely unsta-
ble when exposed to even minimal perturbation. Adding even the smallest amount of
random Gaussian noise to an FID could noticeably alter the distribution of spurious
frequencies and amplitudes in the complex plane. Consequently, if K in P±

K /Q±
K has

stabilized so that all the genuine resonances have been identified, continuing to com-
pute the Padé spectra for a higher degree polynomial, K +m (m = 1, 2, 3, . . .), would
only yield new spurious resonances for a positive integer m. This would automatically
imply that z±

k,Q = z±
k,P and, hence, d±

k = 0 for k = K + m (m = 1, 2, 3, . . .).

All the numerator and denominator terms with spurious poles (z±1 − z±
k,Q) and

spurious zeros (z±1 − z±
k,P ) in the canonical forms from Eq. (5) would cancel. As

a consequence, pole-zero cancellation occurs, with stabilization of the computed
spectra:
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P±
K+m(z±1)

Q±
K+m(z±1)

= P±
K (z±1)

Q±
K (z±1)

(m = 1, 2, 3, . . .). (9)

From the above presentation, it follows that Padé reconstruction actually treats
the number of genuine resonances, i.e. the number of fundamental harmon-
ics K as an unknown parameter. With convergence of the reconstructed fre-
quencies and amplitudes, the parameter K is determined. In practice, this is
achieved by gradually increasing the degree of the Padé polynomials until the
genuine frequencies and amplitudes stabilize. Any further increase in the poly-
nomial degree yields only spurious resonances that are readily detected because
of their instability and pole-zero confluences that yield zero or near-zero ampli-
tudes. This is termed “Signal-Noise Separation” (SNS), and has been estab-
lished within MRS for both noiseless and noise-corrupted MR time signals [9,
10].

1.3 Progress to date using the FPT for MRS data from the ovary and aim of the
present study

In our recent comparative study, the resolution performance of the FPT was found to
be far superior to the FFT, when applied to noiseless time signals that were generated
according to in vitro MRS data as encoded from malignant and benign ovarian cyst
fluid [11,12]. The associated encoded data were from [13]. We also demonstrated the
capability of the FPT to reconstruct the spectral parameters from this noiseless MRS
data for malignant and benign ovarian cyst fluid. Thereby, we could unequivocally
deduce the metabolite concentrations, which are the clinically most relevant MRS
data for distinguishing cancerous from benign ovarian lesions.

In the present paper, we add random Gauss-distributed zero mean noise, in order to
examine the resolution performance of the FPT in a more realistic, yet fully controlled
setting. This is a key preparatory step for application to MR time signals encoded
in vivo and in vitro from ovarian cancer and benign ovarian lesions. Such a system-
atic validation of the fast Padé transform has already been accomplished with the
corresponding FIDs from brain MRS data [6,14].

2 Data analysis

We applied the FPT(−) to a synthesized time signal reminiscent of in vitro MRS data
as encoded from malignant ovarian cyst fluid [13]. The procedure was as follows. The
input data for the spectral parameters {K , ωk, dk} were derived from those reported
for median concentrations Cmet (expressed in µM/L ww, where ww stands for wet
weight) of twelve metabolites for cancerous ovarian cyst fluid obtained from twelve
patients, as reported in [13].

The input peak amplitudes were extracted from the data in [13] using the quotient
2Cmet/Cref . The reference concentration Cref was taken as the largest concentration
(6536µM/L ww) [lactate] from the malignant cyst fluid. The phases ϕk (1 ≤ k ≤ 12)
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Table 1 Input data based upon in vitro MRS data as encoded from malignant ovarian cyst fluid [13]

no
k (metabolite #k) Re(νκ ) (ppm) Im(νk) (ppm) |dk | (au) Ck (µM/L ww) Mk (assignment)

Input data: spectral parameters, concentrations and metabolite assignments
1 1.023 0.0008 0.024 78 Isoleucine (Iso)

2 1.042 0.0008 0.121 395 Valine (Val)

3 1.331 0.0008 0.076 248 Threonine (Thr)

4 1.412 0.0008 2.000 6536 Lactate (Lac)

5 1.513 0.0008 0.179 585 Alanine (Ala)

6 1.721 0.0008 0.150 490 Lysine (Lys)

7 2.132 0.0008 0.019 62 Methionine (Met)

8 2.473 0.0008 0.253 827 Glutamine (Gln)

9 3.052 0.0008 0.020 65 Creatine (Cr)

10 3.131 0.0008 0.024 78 Creatinine (Crn)

11 3.192 0.0008 0.013 42 Choline (Cho)

12 5.223 0.0008 0.080 261 Glucose (Glc)

Hereafter, Re(νk ) denotes chemical shift in dimensionless units of parts per million (ppm), peaks widths
[Im(νk )] are also in ppm, peak heights are in au (arbitrary units), and metabolite concentrations are in
micro-mole per liter (µM/L ww), where ww denotes wet weight. The abbreviations for the metabolites
given herein are used in the subsequent table and figures

from the complex amplitudes dk were all set to zero, so that every amplitude dk

is real, dk = |dk |. The line-widths [related to Im(ωk)] in [13] were estimated to be
approximately 1 Hz. The chemical shifts [Re(ωk)], as the positions of the fundamental
resonances (peaks) for the twelve metabolites are taken from [13]. The input data for
peak positions, line widths, peak heights and concentrations of the twelve metabolites
for malignant ovarian fluid are listed in Table 1.

A magnetic resonance (MR) time signal corresponding to malignant ovarian cyst
fluid was then generated. This time signal {cn} was sampled from the sums of twelve
complex damped harmonics, cn = ∑K

k=1 dkeinτωk (0 ≤ n ≤ N − 1) where N is the
total signal length. Here, the dk’s are the stationary amplitudes and τ is the sampling
time (τ = T/N ). Further, the ωk ′s are the complex angular fundamental frequencies
with Im(ωk) > 0 (1 ≤ k ≤ K ), where K is the total number of harmonics, which is
set to K = 12, according to [13].

The time signals from [13] were recorded using a static magnetic field strength
B0 ≈ 14.1 T (Larmor frequency of 600 MHz) and a bandwidth of 6667 Hz. We used
the inverse of this bandwidth for the sampling time τ . The total signal length N was
selected in [13] to satisfy the Fourier resolving power �ωmin = 2π/T . This would
yield a spectral resolution �ω = 0.02 parts per million (ppm), which should split
apart isoleucine and valine, the two most tightly spaced metabolites. To this end, the
closest integer in the composite form 2m for the time signal length required by the FFT
is N = 215 = 32768. Since, as mentioned, the FPT resolution is not predetermined by
2π/T , a much shorter time signal length could suffice, we sampled our time signals
using only N = 1024.
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To create the noisy FID, Gauss-distributed zero mean noise was added with a stan-
dard deviation σ = 0.01156 multiplying the root-mean-square (RMS) of the noiseless
time signal. The number 0.01156 is nearly the height of the smallest peak in the spec-
trum (choline, peak #11 at 3.192 ppm). This noise level is considered quite realistic
for encoded data.

Once the spectral parameters {K , ωk, dk}(1 ≤ k ≤ K , K = 12) were fixed, to-
gether with N and τ , the signals {cn} could be sampled from the sum of 12 attenuated
complex exponentials {exp(iτnωk)}. When such sampled sets {cn} became available,
they were treated as if K and {ωk, dk} were completely unknown. As such, the task
of quantification was to reconstruct K as well as {ωk, dk} (1 ≤ k ≤ K ) using only
the given N , τ and the digitized data {cn} (0 ≤ n ≤ N − 1), as would also be done
with the corresponding encoded FID. Thus, both experimentally measured and theo-
retically generated time signals can be quantified in the same manner, using the same
spectral analysis. Presently, we shall accomplish this task by applying the FPT(−) var-
iant to the simulated noiseless and noisy time signals to set the standard. The theory
and algorithms of the fast Padé transform are given in [6–10,14].

3 Results

On the left half of Table 2, the peak positions, line widths, peak heights and computed
metabolite concentrations are shown for malignant ovarian cyst data as reconstructed
by the FPT(−), without added noise. These reconstructed data are presented for three
signal lengths, N/32 = 32, N/16 = 64 and N/8 = 128. For the noiseless case,
with 32 signal points, nine of the twelve peaks were identified, whereas isoleucine
at 1.023 ppm (peak #1), threonine at 1.331 ppm (peak #3) and choline at 3.192 ppm
(peak #11) were missing. Thus, 32 time signal points were insufficient to converge to
all the physical resonances. However, with N/16 = 64 signal points, the FPT exactly
reconstructed all the spectral parameters of each of the twelve peaks for the malignant
ovarian data [panel (ii)]. It can be seen that at the signal length N/16 = 64 all the
Padé-reconstructed parameters are identical to the input data and that the retrieved
metabolite concentrations are exactly equal to the input concentrations from Table 1.
The obtained convergence is stable at longer partial signal lengths, as seen by com-
paring panels (ii) and (iii), with the latter being at signal length of N/8 = 128, since
all the reconstructed data for N/16 and N/8 are identical with the input data. We have
also presently confirmed stability at even longer partial signal lengths as well as for
half (N/2 = 512) and the full signal length (N = 1024) for all the genuine peak
parameters reconstructed by the FPT(−).

On the right half of Table 2, the peak positions, linewidths, heights and computed
concentrations are shown for malignant ovarian cyst data as reconstructed by the
FPT(−), with added noise. These reconstructed data are presented for the same three
signal lengths, N/32 = 32, N/16 = 64 and N/8 = 128. As in the noiseless case, with
32 signal points, nine of the twelve peaks were identified; isoleucine at 1.023 ppm,
threonine at 1.331 ppm and choline at 3.192 ppm were missing. At N/16 = 64 signal
points, all twelve resonances were identified, but many of the signal parameters were
incorrect. Notably, the computed concentration of isoleucine was much lower than its
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actual value (13µM/L ww rather than 78µM/L ww). However, at N/8 = 128 signal
points for the noisy FID, the FPT(−) reconstructed all the spectral parameters and the
computed metabolite concentrations were all correct.

The convergence of metabolite concentrations for the noiseless (left panels) and
noisy cases (right panels) are graphically illustrated in Fig. 1 for the three partial signal
lengths: N/32 = 32, N/16 = 64 and N/8 = 128. The input data are represented by
the symbol “x”, whereas the Padé-reconstructed data are shown as open circles. For the
noiseless case, prior to convergence, at N/32 = 32 only the concentration of glucose
is correctly assessed [top left panel (i)]. At N/16 = 64 [left middle panel (ii)] and
N/8 = 128 [left bottom panel (iii)], all of the metabolite concentrations are correct, as
seen both numerically and by the graphic representations. This means that the “x’s”
are completely centered within the open circles, indicating full agreement between
the input and reconstructed data for the noiseless FID. Similarly, for the noisy case
at N/3 = 32 only the concentration of glucose is correctly assessed [top right panel
(iv)]. However, at N/16 = 64 [right middle panel (v)], the computed concentrations
were fully correct only for lysine, methionine, glutamine, choline and glucose. At
N/8 = 128 [right bottom panel (vi)], all of the metabolite concentrations are correct,
as seen both numerically and by the graphic representations.

Since for the noisy case, convergence was achieved at 128 signal points, altogether
64 resonances were reconstructed. Of these, 52 resonances were spurious and 12 were
genuine. Within the illustrative frequency window from 1.6 to 6 ppm, containing 7 gen-
uine resonances, after convergence has been reached, the concept of Froissart doublets
for the noiseless and noisy data is demonstrated in Fig. 2. Panels (i) and (ii) display
the Argand plots [Re(ν−

k ) vs. Im(ν−
k ), where ν−

k is the linear frequency, ω−
k = 2πν−

k ]
for the genuine and spurious resonances. Panels (i) and (ii) show that all the spuri-
ous resonances are Froissart doublets, namely that the poles, marked as open circles,
coincide with the corresponding zeros, denoted by small filled circles (dots). This is
a graphic representation of pole-zero confluence. In panel (i) depicting the noiseless
case, these Froissart doublets show a rather regular alignment along the ordinate within
the major portion (∼3.5–6 ppm) of the displayed part of the whole Nyquist interval.
Interspersed with the Froissart doublets, there are seven genuine resonances, indicated
by the coincidence between the input poles (x’s) and the Padé-reconstructed poles.
Panel (ii) of Fig. 1 displays the noisy case, which differs from the noiseless case only in
that the Froissart doublets show a more irregular distribution along the entire ordinate
for the shown frequency window. In the bottom panel (iii) of Fig. 1, it can be seen that
all the spurious resonances have zero amplitudes, whereas the absolute values of the
amplitudes of the seven genuine reconstructed resonances all have non-zero values.

Figure 3 shows the convergence of the absorption total shape spectra at three signal
lengths for the Padé-reconstructed malignant ovarian cyst data. The left three pan-
els display the absorption spectra generated by the FPT(−) at N/32 = 32 [top (i)],
N/16 = 64 [middle (ii)] and N/8 = 128 [bottom (iii)], for the noiseless case. On the
top left panel (i), nine of the twelve peaks are seen. More signal points are needed
for the appearance of the other three resonances: isoleucine, threonine and the second
resonance in the region between 3.1 and 3.2 ppm. At N/16 = 64 signal length, these
latter three peaks are resolved and the heights of all twelve peaks are correct [middle
left panel (ii)]. Again, consistent with Table 2, at N/16 = 64 the absorption spectrum
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Fig. 1 Metabolite concentrations based upon Padé-reconstruction for the noiseless (left panels) and noisy
case (right panels) for malignant ovarian cyst data from [13]. Three partial signal lengths: N/32 =
32, N/16 = 64 and N/8 = 128, are shown for both cases. Convergence is achieved at N/16 = 64
signal points for the noiseless case [panel (ii)]. For the noisy case, N/8 = 128 signal points are needed for
convergence [panel (vi)]

is fully converged in the FPT(−) for the noiseless case and is stable at N/8 = 128
[bottom (iii)]. The right three panels display the absorption total shape spectra of the
FPT at N/32 = 32 [top (iv)], N/16 = 64 [middle (v)] and N/8 = 128 [bottom (vi)],
for the noisy case. On the top right panel (iv), only four of the twelve peaks are clearly
identified with approximately the correct heights; these are valine, lactate, glutamine
and glucose. At N/16 = 64 signal length, eleven of the twelve peaks are detected.
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Fig. 2 Use of Froissart doublets to distinguish the genuine from the spurious frequencies and amplitudes of
the spectral parameters reconstructed by the FPT(−) within the frequency window between 1.6 and 6 ppm,
based upon malignant ovarian cyst data from [13]. Argand plots for the noise free signal [top panel (i)] and
for the noise-corrupted time signal [middle panel (ii)]. All the spurious (Froissart) amplitudes in both the
noiseless and noisy cases are also identified by their zero values [bottom panel (iii)]

Isoleucine cannot yet be seen on the total shape spectrum. The peak heights are low
for choline, creatinine and creatine in the region between ∼3.0 and 3.2 ppm, as well as
for alanine at ∼1.5 ppm. The peak height of threonine at ∼1.33 ppm is very low and
peak broadening occurs. Again, coherent with Table 2, N/8 = 128 [bottom (vi)], the
absorption total shape spectrum is fully converged for the noisy case. The absorption
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CONVERGENCE of TOTAL SHAPE SPECTRA in FPT (−)  ; NOISELESS (Left) , NOISY (Right) ; FID LENGTH : N/M, N = 1024, M = 8 − 32

Fig. 3 Comparison of the resolution performance of the FPT(−) for noiseless [left panels (i), (ii) and (iii)]
and noisy [right panels (iv) (v) and (vi)] total absorption shape spectra of malignant ovarian cyst data from
[13] at three short partial signal lengths. At N/32 = 32 signal points (top left panel (i) without noise the
FPT(−) has resolved 9 of the 12 peaks. At N/16 = 64 signal length, these latter three peaks are resolved,
the heights of all twelve peaks are correct [middle left panel (ii)], and the total absorption shape spectrum is
fully converged. This convergence is stable at N/8 = 128 [bottom (iii)], for the noiseless case. On the top
right panel (iv) for the noisy case at N/32 = 32, only four of the twelve metabolites are clearly detected
with approximately correct heights. At N/16 = 64 signal length, eleven of the twelve peaks are clearly
identified, but the peak heights are low for several of the peaks [right middle panel (v)]. At N/8 = 128
[bottom panel (vi)], the absorption spectrum is fully converged for the noisy case
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total shape spectra remained converged at longer fractions N/M(M < 4) of the full
time signal including N = 1024, such that the spectra reconstructed by the FPT(−)

stayed unchanged for both the noiseless and noisy cases. This effectively amounts to
both noise suppression and dimensionality reduction by the fast Padé transform. These
two features are responsible for the achieved exact reconstruction, even for noisy time
signals.

4 Discussion

Applied to these MRS data from malignant ovary and in the presence of realistic back-
ground noise, the resolution performance of the fast Padé transform is striking. With
only 128 data points out of 1024 sampled, the Padé-reconstructed total absorption
shape spectra were fully converged. The intensity of MR time signals is the highest
early in the encoding, but subsequently it decays exponentially. It is thus desirable to
encode the time signal as quickly as possible in order to avoid long acquisition times
when mainly noise will be generated, especially for clinical signals that are encoded
at lower magnetic field strengths. It is indeed likely that reliance upon Fourier-based
signal processing has been the major reason for the poor resolution when in vivo MRS
is applied to the ovary. Our previous comparison between the performance of the FFT
and the FPT on noiseless MRS data from the ovary revealed that convergence was
achieved at 512 times shorter signals in the FPT. Specifically, convergence of the total
absorption shape spectra using the FFT required 32768 signal points, compared to 64
signal points with the FPT [12]. Since the FFT showed such poor results in our pre-
vious study on noiseless MRS data from the ovary [12], further comparisons between
Fourier and Padé processing of ovarian MRS data in the presence of noise would be
entirely superfluous, and, as such, is left out.

Rather, the salient question for the present paper is how well does the FPT perform
in the important practical setting of quantifying noise-corrupted MRS time signals?
Beginning with a consideration of the total absorption shape spectra, in the presence of
realistic background noise, the FPT(−) requires twice more signal points to converge,
compared to its performance on noiseless signals. Notably, prior to convergence at
N/16 = 64 signal points, isoleucine which resonates at 1.023 ppm, was not detected on
the total absorption shape spectrum. Instead, the closely-lying valine peak at 1.042 ppm
appeared to be somewhat widened and asymmetric. This observation could be of clini-
cal relevance since isoleucine and valine that are observed in the interval between 1.02
and 1.04 ppm reportedly show significant differences in non-cancerous and malignant
ovarian cyst fluid [13]. In the latter, higher concentrations of these branched-chain
amino acids are interpreted as being protein breakdown products from necrosis and
proteolysis. Taken together, these considerations underscore the vital importance of
ensuring that the total absorption shape spectra are fully converged. We have elsewhere
given examples in which close-to but still prior-to convergence, information inferred
from the total absorption shape spectrum may be incorrect. This includes metabolite
ratios, upon which much clinical decision-making is based in oncology and elsewhere
[15].
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Whereas convergence of the total shape spectrum is necessary, it is clearly insuffi-
cient to guarantee that the spectral structures have been identified, let alone accurately
quantified. The latter requires stable parametric processing, with unequivocal distinc-
tion between genuine and spurious spectral information. For the present problem of
ovarian cancer MRS data, there were over four times more non-physical than true res-
onances when convergence of all the spectral parameters was achieved. It was clearly
demonstrated that these spurious resonances were characterized by pole-zero cancel-
lation with regard to the complex frequencies and by the corresponding zero-valued
amplitudes. It should be pointed out that the number of spurious resonances and their
percentage in relation to those that are genuine reflect some of the more subtle aspects
of spectral processing. These include the smallest distance among the poles and zeros,
the density of poles and zeros in the complex plane, and also inter-separations among
poles and zeros [16]. The Argand plots, as displayed for the present problem in panels
(i) and (ii) of Fig. 2, show that all the physical poles are lined up at infinitesimally
small distances below the real axis which is characterized as Reν = 0. Widths are
inversely proportional to the corresponding lifetimes of resonances. As such, hori-
zontally aligned poles in the immediate neighborhood of zero-valued chemical shifts
on Fig. 2 are associated with long-lived resonances. Longevity implies stability and
robustness against external perturbations, such as noise. The spectral zeros of the
physical resonances contribute to the overall stability. As per Eq. (8), the distance
between a given genuine pole and the associated genuine zero is proportional to the
peak height. However, the factor of proportionality is a quite involved function of the
peak widths for all the K genuine resonances, as is clear from Eq. (7).

As explained in the Introduction of this paper, and demonstrated in numerous pre-
vious applications [6,8,14,16], after the point of convergence, Padé-reconstructions
remain stable, since all the additional resonances are readily recognized as being
non-physical, by way of the SNS concept implemented through detection of Froiss-
art doublets. In other words, K as the number of genuine resonances, is treated as
an unknown parameter and determined uniquely through the FPT. It should also be
emphasized that the stability of the FPT sharply contrasts with most other parametric
estimators that typically show wild oscillations before eventually converging, if at all
[6,8,14].

Besides determining K , the FPT(−) exactly reconstructs the four other real-valued
spectral parameters, namely the two complex-valued frequencies and complex ampli-
tudes for all twelve metabolite peaks, in the presence of realistic background noise.
This required only 128 signal points, and such a finding is even more remarkable
than convergence of the total shape spectrum. Thereby, the most essential clinical
information, which is the metabolite concentrations, was computed unequivocally.
By applying in vitro MRS with high magnetic field strength, as well as sophisticated
laboratory processing techniques, several MR-visible compounds have been identified
that help distinguish benign and cancerous ovarian lesions [13,17–19]. Herein, we see
that Padé reconstruction holds promise for detecting and accurately quantifying these
compounds in the presence of realistic background noise.

Our initial analyses were performed using noise-free synthesized time signals to
set up the fully-controlled standard for the FPT in the case of the first application of
this method to data within the realm of ovarian cancer diagnostics by MRS [11,12].
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This was methodologically justified [14]. In the present study we extend our analysis
to noise-corrupted synthesized ovarian data (still well-controlled), as a key step in the
validation process for Padé-optimized MRS. The next step, which is in progress, is to
perform analysis with the FPT upon in vivo encoded MR-time signals from benign and
malignant lesions of the ovary, with in vitro and in vivo clinical correlations together
with histopathology for validation.

Massuger et al. [17] consider that in vivo MRS could become the method of choice
for early stage ovarian cancer detection, insofar as the obstacles hindering the acqui-
sition of high quality time signals and subsequent reliable analysis of spectra as well
as their interpretation can be surmounted. The results presented in this paper suggest
that Padé-optimized MRS could contribute to this aim.

Effective strategies for accurately detecting ovarian cancer in its early stages are
urgently needed. Given that MR-based modalities do not entail exposure to ionizing
radiation, insofar as their diagnostic accuracy were improved, magnetic resonance
imaging and spectroscopy could have more widespread application in screening sur-
veillance for early ovarian cancer detection. Padé-optimized MRS could help achieve
that goal.

5 Conclusion

In the presence of realistic background noise, the FPT applied to time signals gen-
erated according to in vitro MRS data as encoded from malignant ovarian cyst fluid
showed high resolution and accurately reconstructed spectral parameters for all the
genuine resonances. Thereby, the FPT provided fully reliable estimates of metabolite
concentrations characteristic of malignant ovarian cyst fluid. The powerful concept of
SNS through the identification of pole-zero coincidences (Froissart doublets) is illus-
trated in a setting which is directly relevant to cancer diagnostics. In vivo MRS has
been envisioned as the potential method of choice for early stage ovarian cancer detec-
tion. However, this would require overcoming the barriers obstructing the acquisition
of high quality time signals and subsequent trustworthy analysis of spectra. Molec-
ular imaging through magnetic resonance spectroscopy could therefore have much
broader applications in screening surveillance for early ovarian cancer detection, par-
ticularly among women at high risk. This possibility is especially attractive because
there is no exposure to ionizing radiation through magnetic resonance. The results of
the present study strongly suggest that Padé-optimization will be an invaluable step
towards improving the diagnostic accuracy of MRS for ovarian cancer. Thereby, better
outcomes can be anticipated for women afflicted with this malignancy.
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